

CloudSat Anomaly Recovery and Operational Lessons Learned

Michael Nayak Space Development and Test Directorate, US Air Force

Mona Witkowski
Jet Propulsion Laboratory, California Institute of Technology

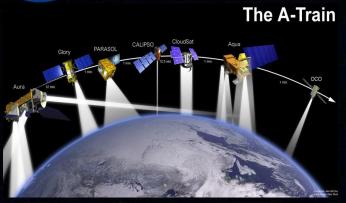
Outline

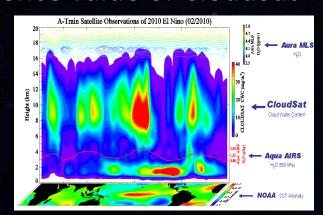
- Introduction
 - ...CloudSat mission, Science value, Spacecraft System
- Battery Degradation / Anomaly
 - ...History, Under Voltage (UV), Emergency Mode
- Characterizing the Anomaly
 - ...Exit the Afternoon Constellation, Escaping Emergency Mode
- Developing new flight modes
 - ...Sun Point Spin, Momentum Bias Point, Daylight Only Operations
- Daylight Only Operations (DO-Op)
 - ...The new normal
- Lessons Learned
 - ...Keys to success, Team takeaways

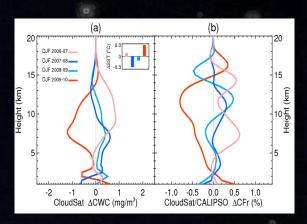
Introduction (1/2)

... About the CloudSat mission

- Launched in 2006, part of NASA Earth
 System Science Pathfinder Program
- Unique millimeter wavelength cloud profiling radar (CPR)
 - 1000+ times more sensitive than any ground based radar
 - Mission goal: Build first global survey of vertical structures, profiles of condensed water, ice in clouds
- Designed for 22-month life; 6+ yrs to date






Introduction (2/3)

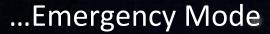
...Science value of CloudSat

- Understanding of how Earth's clouds influence climate change
- Determine relationships between variability of clouds with key environmental factors
 - Characterize changes across seasons and on a decadal time scale
- Rich synergy with A-Train observations extending mission reach
 - Example: 3-D structure of cloud response to multiple El Ninos

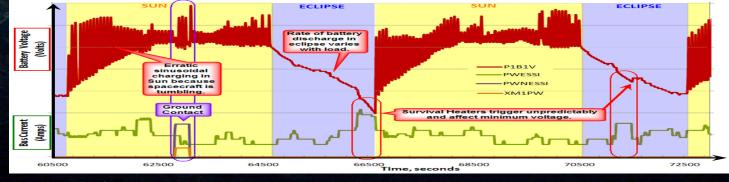
Introduction (3/3)

...Systems Architecture

- Power
 - Direct energy transfer power architecture
 - Two solar arrays: 1000 W of power to recharge 40 Amp-hr battery
- Thermal
 - Primarily passive, but contains thermostatic & manual control heaters
 - Critical 'survival' heaters cannot be externally disabled
- Fault protection
 - If system discharges past certain level: Under-Voltage fault
 - Power buses shed to keep power to essential components
 - Highly flexible: Key to recovery
- ADCS


Three axis control: torque rods, reaction wheels, thrusters

Introduction Anomaly Characterize New modes Lessons


Battery Anomaly

- 2009: Battery shows signs of aging: Soft-short
- 2010: Ground contacts restricted to sunlight only: CPR collections continue in eclipse
- 17 Apr 2011: UV levels trip, CloudSat descends to Emergency Mode
 - Stable spin up around X-axis to maintain positive power profile
 - With survival heaters on: Battery able to support 10% of previous energy
- Eclipse battery charge constantly drained by survival heater activation
 - To even consider recovery, additional load capacity needed

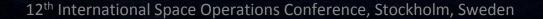
12th International Space Operations Conference, Stockholm, Sweden

Characterizing the anomaly (1/3)

...Understanding the problem

- Battery victim of diffusion limiting current
 - Sudden drop in voltage when diffusion limit reached
- Recursive problem: Manual charge control insufficient
 - Survival heater turns on in eclipse -> Current limit exceeded ->
 UV fault trips -> Charge level reduced to default
 - With inability to support loads: Primary heaters shed ->
 Battery temps drop -> Reduced battery capacity -> More
 frequent UV fault trips -> More frequent heater trips
- Recovery Step 1:

Modify redundant power control system to reduce fault thresholds while maintaining high charge rate



Characterizing the anomaly (2/3)

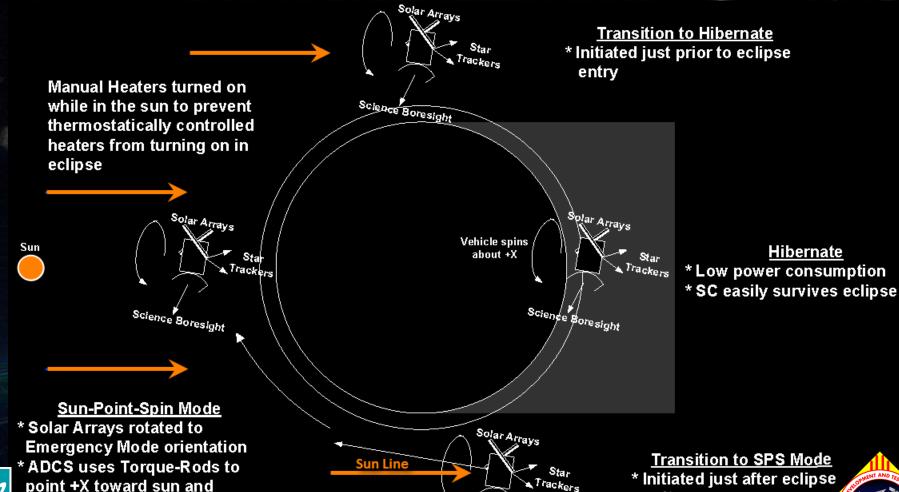
...Exit from Afternoon Constellation

- Risk to A-Train (especially AQUA) from control box drift
- Complications:
 - Variation of Emergency Mode spin rate : Thruster fire to place
 S/C in a stable spin rate for power capture
 - > Risk: Causes small unpredictable ΔV
 - SCC needed to stay on through eclipse for maneuver commanding
- Recovery Step 2: Component pre-heating strategy
 - During one critical commanding contact: All commands transmitted to turn select manual heaters on, recover control, execute maneuver -- successful orbit lower

Characterizing the anomaly (3/3)

...Way forward revealed!

- Pre-heating with manual heaters could keep survival heaters off, avoid UV faults
- CONS:
 - Heater cycling needed every eclipse exit & entry
 - Heater power available only in select spin-to-sun orientations
 - Reaction wheels must be off in eclipse: Without 3-axis
 control, spacecraft drift could off-point arrays on eclipse exit
- Way forward to Recovery Step 3 clear
 - New flight modes needed without flight software change



exit

Developing new flight modes (1/4)

...Sun Point Spin

Science Boresight

maintain constant spin rate

Developing new flight modes (2/4)

... Momentum Bias Point Mode

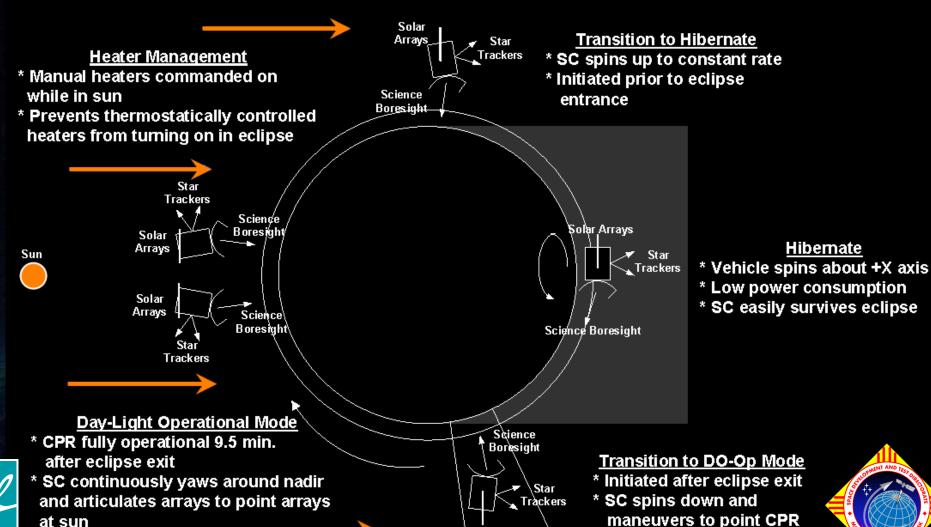
- SPS proved SCC could stay powered, recover ops after exiting eclipse
- Recovery Step 4: Storing momentum in reaction wheels
 - Maintains spin stabilized attitude through eclipse
 - Maneuvers CPR to nadir after eclipse exit
 - Points X-axis & rotates solar arrays to Sun, upon exit
- SPS upgraded to Momentum Bias Point
 - Return to operational capability within reach!
- Recovery Step 5: Adding CPR cycling to sequence

Introduction Anomaly Characterize New modes Lessons

Developing new flight modes (3/4)

...Graduating to Daylight Ops

- Pre-heating strategy developed to raise the CPR temp
 - If CPR survival heaters trigger in eclipse: UV fault
 - Preparatory (PREP) mode needed as preface to Daylight Only Operations (DO-OP)
- Other modes developed to support DO-OP CONOPS:
 - Recovery mode: Uses less heater power than SPS mode
 - COLA mode: Enables short notice orbit lowers, raises
 - ΔV mode: Enables any other designed maneuver burns



Developing new flight modes (4/4)

...Standby, Prep, DO-OP

Solar Arrays

boresight at nadir

Daylight Only Operations (DO-Op) ...The new normal

Anomaly lessons learned (1/3)

...Keys to success

- Communication
- Involvement
- Co-Location
- Creativity
- Risk Management

- Flexible assets
 - AFSCN
 - GSA
 - Test Bench
- Veteran Team
- Urgency

Anomaly lessons learned (2/3)

...Team Takeaways

- Understanding
- Scrutiny
- Risk
- Luck
- Staffing

Mission Assurance

Anomaly lessons learned (3/3)

...Conclusion

- Nov 2011: NASA/JPL declared CloudSat fully operational in DO-OP Mode
- CloudSat collects science data during sunlit portion of orbit, stable spin hibernation in eclipse
- New CONOPS requires constant monitoring of thermal and power profiles, while allowing collection of 54 mins of science data per sunlit orbit

New flight modes successfully integrated into operations: CloudSat returning to the A-Train!

